Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

نویسندگان

  • J E Morgan
  • E P Hoffman
  • T A Partridge
چکیده

Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficult to determine whether this biochemical "rescue" results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration (Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299-314). By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily (Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.) Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a myogenic stem cell that is exhausted in dystrophic muscle.

Injection of the myotoxin notexin, was found to induce regeneration in muscles that had been subjected to 18 Gy of radiation. This finding was unexpected as irradiation doses of this magnitude are known to block regeneration in dystrophic (mdx) mouse muscle. To investigate this phenomenon further we subjected mdx and normal (C57Bl/10) muscle to irradiation and notexin treatment and analysed the...

متن کامل

Characterisation of Stem Cells in Adult Mouse Muscle

There is evidence that some of the muscle precursor cells (mpc) implanted into adult mouse muscle remain as quiescent stem cells, able to give rise to more quiescent muscle precursor cells and to mature muscle. Rare myogenic cells of donor origin were extracted from irradiated mdx muscle implanted with normal H-2K -tsA58 mpc; these extracted cells gave rise to new muscle and to cultureable myog...

متن کامل

Intraarterial Injection of Muscle-Derived Cd34+Sca-1+ Stem Cells Restores Dystrophin in mdx Mice

Duchenne muscular dystrophy is a lethal recessive disease characterized by widespread muscle damage throughout the body. This increases the difficulty of cell or gene therapy based on direct injections into muscles. One way to circumvent this obstacle would be to use circulating cells capable of homing to the sites of lesions. Here, we showed that stem cell antigen 1 (Sca-1), CD34 double-positi...

متن کامل

Stem Cells Restores Dystrophin in mdx Mice

Duchenne muscular dystrophy is a lethal recessive disease characterized by widespread muscle damage throughout the body. This increases the difficulty of cell or gene therapy based on direct injections into muscles. One way to circumvent this obstacle would be to use circulating cells capable of homing to the sites of lesions. Here, we showed that stem cell antigen 1 (Sca-1), CD34 double-positi...

متن کامل

Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle.

Duchenne muscular dystrophy is a primary muscle disease that manifests itself in young boys as a result of a defect in a gene located on the X-chromosome. This gene codes for dystrophin, a normal muscle protein that is located beneath the sarcolemma of muscle fibres. Therapies to alleviate this disease have centred on implanting normal muscle precursor cells into dystrophic fibres to compensate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990